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Missile acceleration during the boost phase.
Missile deceleration during the coast phase.

Spherical angle between the missile velocity vector and the
1ine of sight to the target.

Target acceleration.
Maximum value of the control.

Matrix describing the dynamic interaction between the state
variables.

Components of applied forces on respective body axes.
Components of applied moments on respective body axes.
Acceleration due to gravity.

Hamiltonian function.

Moment of inertia with respect to the given axis.
Cost function.

Matrix describing the dynamic interaction between the state
and control varfables.

Missile mass.
Components of applied acceleration on respective body axes.
Angular rates about the x, y, and z body axes, respectively.
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PITCH

ROLL

X,¥,2

X,Y,Z

YAW

------------------------------

The angle measured in the vertical plane between the x body
axis and the inertial XY plane.

Slant range from missile to target.

(Bank) Angle measured in the yz plane of the body system
between the y body axis and the YX inertial plane.

Time during which the missile is accelerating (burn time).
Time-to-go (Estimated).

Time.

Final time.

Switching time between saturated and unsaturated control.
Initial time.

Linear velocities with respect to the x, y, and z body axes,
respectively.

Control variable.
Missile total velocity.
Closing velocity.
Target total velocity.

Inertial relative velocities with respect to the X, Y, and Z
inertial axes, respectively.

State vector.

Body stabilized axes.
Inertial axes.

Terminal boundary condition.

The angle between the projection of the x body axis onto the
inertial XY plane and the X inertial axis.

Missile ROLL Euler angle.

Missile PITCH Euler angle.
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Initial azimuth angle between the target velocity and
missile LOS.

Seeker elevation angle.
Missile YAW Euler angle.

Initial elevation angle between the target velocity and
missile LOS.

Seeker azimuth angle.

Components of missile angular rates with respect to the
respective seeker gimbal axes.

Reciprocal of the target maneuver time constant.

Weighting factor.
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\\\7§Linear optimal control laws used for bank-to-turn missile guidance
were investigated. The performance of these control laws was erratic
because their development neglected attitude dependent constraints on
the control variables. The effects of an inequality constraint on the
control variable in a fixed final time, zero error controller were
analyzed. This analysis led to the conclusion that the accepted tech-
nique of applying the constraint to the unconstrained optimal control
solution is valid only if the control is saturated during the initial
portion of the trajectory. Constraints during the terminal phase must
be anticipated by adjusting intermediate boundary conditions. The
nonzero set point optimal control law used for the analysis of inequal-
ity constraints was 1incorporated into a nonlinear Bank-to-turn
"attitude” controller. This controlle:, which was evaluated on a six

degree of freedom simulation, -=~ce .ully eliminated the deficiencies
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CHAPTER I
INTRODUCTION

The classical approach for air-to-air missile control was based on

velocity pursuit guidance, which is implemented by requiring the missile
velocity vector to point at the target [1]. While adequate for slow
moving targets, the concept fails in the current air-to-air scenario
because, as the distance to the target decreases, the turning rate of ii
the missile increases until unattainable accelerations may be required. ;5
Current guidance laws are based on proportional navigation which
causes the missile to fly a straight line trajectory toward the target iﬂ
[2,3,4]1. In proportional navigation (pro-nav), the line-of-sight (LOS) '“

rate is regulated to zero. Consequently, the implementation is simple

because the outputs of a gimballed seeker provide direct missile
acceleration commands. Also, this guidance law has better performance

if the target and missile have constant speeds. Bryson and Ho [5] have

shown that proportional guidance is optimal in the linear quadratic

gaussian (LQG) sense if:

1. the target has constant velocity,

2. the missile has unlimited and instantaneous response,
3. the LOS angles are small,

4., the missile velocity along the LOS is constant.

However, these assumptions, inherent in the formulation, lead to rather

!
{
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3
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serious 1imitations or inadequate performance in the current air-to-air

arena [6]. Therefore, improved missile guidance laws are required for
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more demanding engagements, more maneuverable targets, or improved
accuracy.

While a number of guidance laws have been devised to improve the
shortcomings of pro-nav [3,4,6,7,8,9], a number of advanced guidance
techniques have been investigated to increase the launch envelope,
provide better maneuver capability, and reduce the miss distance
experienced with the classical approaches. These techniques use optimal
control methods based on [1]:

1. Linear Quadratic Theory,

2. Linear Quadratic Gaussian Theory,
3. Singular Perturbation Theory,
4. Reachable Set Theory,
5. Differential Game Theory,

6. Adaptive Control,

7. Dual Control,

8. Spline Polynomial Approximations.

In general, these studies have either neglected the acceleration
constraints, uncoupled the equations of motion, or reduced the problem
to two dimensions. Nevertheless, a number of these optimal guidance
laws have been applied to the study of a specific "generic" short range,
highly maneuverable, bank-to-turn, air-to-air missile [10,11].

For the models under consideration, the optimal control laws were
based on the finite dimensional linear system:

X =Fx + Lu
where the state variables, and system matrices are defined ¢to
incorporate assumed system dynamics. The control laws were solved in
inertial coordinates with a quadratic cost that included a penalty on
miss distance and assumed a known fixed final time. Four 1inear and
four nonlinear laws were defined by Fiske [8]. Table 1 presents the

description of the linear models.
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TABLE 1.1 Optimal Linear Guidance Laws

DESIGNATION DESCRIPTION
Gl Optimal Linear Guidance.
G2 Optimal Linear Guidance accounting for

target acceleration.

G3 Optimal Linear Guidance accounting for
target acceleration and first-order
missile/autopilot dynamics.

G4 Optimal Linear Guidance accounting for
target acceleration and second-order
missile/autopilot dynamics.

The nonlinear models were determined from the same models as the linear
guidance laws except that the results were passed through the saturation
function.

Initial results with the advanced guidance laws indicated only
marginal performance gains over the classical technique, pro-nav. In
fact, proportional guidance performed as well as optimal guidance where
the missile had large heading errors (in violation of an assumption for
pro-nav optimality) [5,8]. Also, increasing the complexity of the
guidance law or filter (15 vs 9 states) did not statistically improve
the performance [8].

As a simplifying assumption, the optimal control derivations
assumed a fixed final time. And, since the control law is sensitive to
this parameter, an initial explanation for the failure of the optimal
guidance laws was the accuracy of the Time-to-go (Tgo) estimate [11].
Consequently, an improved Time-to-go estimating technique was developed
by Riggs [12] . This technique was simple, stable, and effective in

increasing the missile's performance on the inner launch boundary. The

technique also addressed one of the other less desirable assumptions in

wilih, .
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the formulation of the problem, control over axial acceleration. 1In
effect, Riggs' Tgo algorithm operates by equating the x commanded
acceleration from the control law to an estimate of the average
acceleration and solves the unknown parameter Tgo. With this new
estimate of Tgo, the advanced guidance laws (evaluated with a passive
seeker) significantly outperformed pro-nav in the short range
environment [11].

This thesis addresses some remaining limitations of the current
optimal control 1laws and provides an alternative mechanization of

optimal control results.
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CHAPTER I1I
OPTIMAL CONTROL LAWS

Modern control theory [5,13,14] provides techniques to optimize

guidance laws for air-to-air missiles. With respect to the stochastic
control problem, Shalom and Tse [15] outline the various types of
stochastic control laws available. Shalom and Tse and Van De Water and
Willems [16] provide justification for the use of the Certainty
Equivalence Property (no dual effect of second order). Consequently,
although stochastic models are discussed in [5] and a specific technique
is introduced in [8], the general procedure in air-to-air guidance is
the use of filtered estimates that provided conditional expectation and
rely on a dynamic-programming4like definition of optimality with the
Certainty Equivalence Property to find optimal control laws
{15,16,17]. Therefore, the guidance laws that have been derived and
implemented in [8,10,11] and that will be considered here are
deterministic.

As mentioned previously, the studies that have provided optimal
(both 1linear and nonlinear) guidance laws have neglected the

acceleration constraints, uncoupled the equations of motion, or reduced

the problem to two dimensions. The application of these guidance laws
to the bank-to-turn, air-to-air missile has produced unexpected results

[10,11]. Most of the current anomolies can be traced to the formulation

L.)“_l:‘-‘ Foren s

of the control law and the properties of the bank-to-turn missile.
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While this vehicle can attain high normal accelerations, it has
some unusual limitations, and the guidance laws did not consider these
restrictions. To begin with, the control laws were derived using an
unconstrained, fixed final time controller with a quadratic penalty
function on the terminal error [7,8]. Actually, the problems are a
terminal controller with zero terminal error, inequality constraints on
the admissible controls, and final time free.

Also, there is an aspect of this generic bank-to-turn missile that
is in conflict with the unconstrained formulation of the advance
guidance laws. In contrast to the "standard" air-to-air missile which is
symmetric and can maneuver equally well along either axis, this missile
has a planar body that provides a high coefficient of 1ift. (See
Appendix D.) Consequently, it can maneuver well along one axis (100
"g") and very poorly along the other (5 "g"), and in order to utilize
it's acceleration potential, the missile must bank to maneuver (turn).
The current control laws function with relative positions and velocities
in 1nertial space. Yet, the control constraints are significantly
different for each body axis and are fixed with respect to the missile
body axis. The result is unequal control constraints that are a
function of the relative target-missile attitude and geometry.

A related shortcoming of the guidance laws is the absence of roll
control. This absence can lead to additional problems. First, the
seeker gimbals are limited (60 degrees), and this limitation is not
considered. Also, since the guidance laws rely on the autopilot to roll
the missile, it may be possible for an evading target to maneuver itself
such that its maximum maneuver direction is orthogonal to the missile's

primary axis and gain a temporary maneuver advantage. Since the warhead
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effects are a function of roll angle, these effects will couple with the

maneuver advantage to 1imit the effectiveness of the missile.

Si ’ The first shortcoming, the zero error controller versus the

: quadratic penalty on the miss distance, was first addressed by )

Youngblood [9]. In [9], the following assumptions were incorporated ?
into the model:

1. PITCH and YAW motion are uncoupled by roll;

2. the angular deviation between the x body and inertial ‘

axes is always equal to zero; '

3. the relative axes are nonrotating and the line of sight

angle is small;
4. the target has constant lateral acceleration.

While the research effectively handled the zero terminal error
aspect and demonstrated improved performance, it did not consider the
control constraints or the fact that the Euler angles, and consequently
the control law, were changing as a result of the control inputs.

An analysis of the trajectories, in addition to the miss distance,
indicated that the primary problem with the control 1laws using the
improved Tgo was associated with the attitude dependent missile
acceleration constraints that were not modeled. Consider for example
- the following two runs made from the same initial conditions using
different guidance laws. Both of these runs are well within the launch
envelope of the guidance law, use perfect position data with control
%i . fnputs that are constrained by the autopilot, and are against a target
: that begins a level 9 "g" turn when the range equals 6000 feet. Run 1

uses Gl, and Run 2 uses G4--the more sophisticated guidance law.
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As seen from Figures 2.1 and 2.2, the simpler Gl performs better
than G4 in that it has a smaller miss distance (21 versus 32 feet) and
more control available in the terminal phase. The difference is caused
by the fact that G4 incorporates second order missile dynamics and
generates a command that accounts for the imperfect autopilot.
Consequently, terminal errors in the states cause higher acceleration
commands as G4 accounts for autopilot delays. These commands saturate
unequally and the resultant vector is rotated away from the target.
This in turn causes larger deviations, further saturation and a near
miss. In fact, while the acceleration commands of Gl are well within
the maximum since the missile performed the roll toward the target, the
G4 commands are saturated for the last .36 seconds prior to impact.

An attempt to include control constraints resulted in the nonlinear
models of Fiske [8]. But these nonlinear models were determined from
the same models as the linear guidance laws except that the results were
passed through a saturation function. This method had two errors.
First, the inertial constraints are Euler angle (attitude) dependent,
and as seen from Figures 2.1 and 2.2, arbitrarily limiting one or both
axes without considering the effect on the resultant acceleration
command, can cause the missile to actually accelerate away from the
target. Second, while the use of the saturation function seems like the
natural procedure and is discussed by Tufts and Schnidman [18] and
Bryson and Ho [5], the unmodified use of the saturation function may not
be optimal. A discussion of the effects of constraints on control
continues in Chapter 1II.

If the model used to develop the controller accurately describes

the dynamical system and a closed form solution for this model can be
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computed, then the optimal control can be based on initial solution of
the unique two point boundary value problem. Consider two identical
systems. If one of the processes is "interrupted" and then reinitiated
using the existing values as initial conditions to the same boundary
value problem, then two processes would still have the same
trajectory. However, if the model used to develop the controllers was

not accurate because of approximation, neglected states, etc., then the

same experiment with the "simplified" controller would not produce the
same trajectory, and the interrupted controller would have feedback
gains that are more consistent with the accurate controller.
Consequently, the "simplified" controller must be reinitialized at each
guidance update [6]. In the latter case, the terminal controller is not
a function of time but of only Time-to-go to the terminal state. This
is an effective technique to accomodate nonlinearities, modeling errors,
and uncertain target maneuvers.

In addition, the one step update gives the terminal controller with
a quadratic penalty function on the terminal error some of the
properties of the zero terminal error controller. In the quadratic
penalty error controller, the control gains decrease to zero as the time
approaches the final time. In the zero terminal error controller, the
control gains grow without bound as Tgo approaches zero. When a one
step update is used with the quadratic penalty error controller, the
small Time-to-go couples with terminal errors resulting from the
simplified model to produce acceleration commands that grow
exponentially. Figure 2.3 depicts the acceleration commands from the
guidance law Gl, as a function of Time-to-go, for the same rangr and
velocity. As Tgo becomes small, the acceleration commands grow

exponentially, resembling the zero terminal error controller.
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CHAPTER III
CONSTRAINED CONTROL

In a missile guidance and control system, the function of the
autopilot 1is to realize the commanded acceleration. When the
acceleration is not realizable because of aerodynamic or structural
limitations, the autopilot generates the maximum allowed for each
axis. In effect, the autopilot saturates each axis of the commanded
acceleration independently and may significantly modify the resultant
vector. Therefore, when these control constraints are introduced, the
optimal control law discussed in the last chapter is no longer valid.

The optimal control law, given by Pontryagin's Maximum principle
for a linear system with a quadratic performance index, is found by
maximization of the Hamiltonian which is a quadratic function of the
state, control and adjoint variables [5,18]. In the absence of
"; constraints, this leads to a linear control law. With constraints, the
: form of the control law is still linear provided the constraint is not
violated. Otherwise, the control is equal to the constraint. Due to
the form of the constrained optimal control, one might assume that the
constrained control can be obtained by direct application of the
constraints to the unconstrained optimal control [5]. This technique,
while simple to implement, may not be optimal, and often will not allow
the terminal condition to be met.

In this chapter, the relationship between the constrained optimal

control and the suboptimal control formed by constraining the
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unconstrained optimal control will be discussed. It is shown that in

certain situations (initially constrained control), when feedback

i '.'J g DA
A K

controls are implemented, the two cases are identical. If the final
portion of the trajectory is on the constraint, however, the system will
not be able to satisfy the terminal boundary conditions unless the final
condition 1is in the reachable set of the constrained control.

Therefore, the initial (unconstrained) segment of the trajectory should

be adjusted to account for the final constraint.

Because uncertainty with respect to the final state is assumed
(which will also account for unmodeled errors in the dynamical system),
a one-step update will be used.

Consider the state variable of the first order example and the form
of the quadratic cost. The common technique in air-to-air guidance is
to select relative Euclidian coordinates as the state, and control to a
zero set point. This establishes the value of the state variable as the
difference between the missile and target inertial positions. And
consequently, the boundary condition for the relative state is always
zero. Another technique better suited to solving this optimal control
problem with inequality constraints on the control is to choose the

seeker gimbal angles as the states, use the linear control law to

determine the optimum angles, allow a non-zero set point, and solve the

=

{ differential system to include the actual boundary conditions. Also,
?! 3 the usual quadratic cost penalizes the deviation from the final state.
:A In this case, however, the intermediate cost is in large gimbal
E angles. First the gimbal angles are structurally limited. This is, in
F. fact, a state variable constraint which is not modeled in the

optimization. A larger angle increases the probability of exceeding the
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gimbal angles limit when the target maneuvers. Second, because the
missile has two to three times the velocity of the target, larger gimbal
angles will lead to higher accelerations during the terminal phase if
there are errors in the estimate of the optimal angle due to an input

parameter such as relative position, velocity, acceleration, or Tgo.

Constrained Control Solution

Given: x(ty), y(ty) with x(te) = y(te)

Determine the optimum control such that:
te 2. 2
Jd= [ T(x %+ u°) dt is minimum
%
subject to the constraints |u(t)| < a and x(t) = u(t).
Writing the Hamiltonian

H=x"+u" +Pu

The adjoint is given by the solution of

and the u which minimizes H is found to be:

-a sgn (P) [Pl > 2a

-e IP| < 2a




And, if T := te - t,

y(t) xtgle™  (t-ty)
el Tt

x(to)
T-

e

eT y(tf) -(t-to)

e
T T T

*

and R
ylte)  x(tyle -(t-tg)
W =l g—r-a-_Tle
e -e e -e

T
_ { X(to)e _ Y(tf) } e'(t‘to)
el - e o -

Now, let t = to + current time. Therefore,

cosh{ tc - t;} y(te)
SRt & -ty 0! * STRT T — ey

X(to) = U(to) S -
which can be made exact by an integrating factor and integrated
directly. The result is a closed form expression for x at any time:

sinh { t,. - (t, + At)} y(t.)at
e x(tg) * sranrt
sinh{ t¢ - 0 } stnn{ T - % }

x(to + At) =

PR I I A I A . [ N
el T, R P . . . PR
RV Lot e SR
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Initial Constraints

Assume that the control will be on the constraint during the
initial portion of the trajectory. In this case, the saturated value is
the optimal control. It is possible to calculate the time that the
control will first become unconstrained. While the control law must
consider the sign of the state and control, for clarity, the following

equations assume a positive state, and therefore, a negative control.

While on the constraint, the state will follow:

x(t) = x(tg) - at
Setting the expression for the control equal to "-a" and solving for "t"
will provide a transcendental equation that gives the switching time

from constrained to unconstrained control:

-(te-t))
Zy(tf) -e [a+ x(to) - a(tf - ts) }

-( te-t)
e S { x(ty) - a -alte-t) } =

Here "ty" is equal to the initial time, "t¢" the final time, and "tg"

the switching time.

Final Constraints

If the value of the optimal control is larger than the constraint
during the final portion of the trajectory and the control law does not
anticipate this fact, the boundary conditions will not be met. However,
there may exist a Time-to-go and state such that the subsequent use of

the saturated control will cause the system state to just satisfy
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boundary conditions. If the control is equal to the saturated value "a"
and the state is equal to:
x(t) = y(te) - alte-t.),
then the terminal boundary conditions will be met.
Because the closed loop control is not defined at t = tc, and the
control law only provides the fact that
X=u
the open loop control expression must be used to determine this time.
Solving for time in the open loop equation with:
yltg) = y(tge) - alte-tg)

u(ts) = a
tf=t$
T=ts-t0

-T
(4 = | y(ts) x(tg)e \ e(ts-to)
‘ eI - e'I i eI - e'l

xtgle!  y(t)  =(t-tg)

-{ — - — e
eT-eT eT-eT

The result is the following equation for t.:
a sinh(t -ty} - { y(te) - alte-t.) } cosh{t -ty} + x(t5) = 0
This equation can be solved for the associated switching time. Then,
this time “t,", and boundary condition--
x(tg) = ylte) - alte-t,)
are used in the solution of an unconstrained optimal control problem.
The result will be a control that meets the actual boundary condition

"ylte)" at "t

" R Wy . Py ey -

e
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Examples ®
The following figures illustrate the use of the computed switching

times to account for boundary conditions. In these first order

examples, the initial value of the state is 1, the initial boundary. [}
condition is the zero state, and the control is constrained to a value i;
E of 1.1. 1If the terminal boundary condition changes, it does so at .5 iﬁ
seconds and is set again at 1. Also, in these examples, the following ;i
definitions are used: ;f
Unconstrained = There are no contraints on the control magnitudes. i@
4
Suboptimal = There are constraints on control magnitudes, but an ii
unconstrained control is calculated and passed ;ﬁ
through the saturation function. "

Constrained = There are constraints on control magnitudes, and
the control is calculated to account for the con- i&

straint.

Reachable Set There are constraints on control magnitudes, and

the control is calculated to ensure that the final

control is off of the constraint.
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Figure 3.2 shows the effect of an initial constraint.
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Figure 3.3 UNCONSTRAINED CONTROL--MULTIPLE FINAL CONDITIONS

Figure 3.3 shows the system behavior when the termminal
condition is changed at t = .5. Again, there are no con-

straints on the control.
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Figure 3.4 SUBOPTIMAL CONTROL--MULTIPLE FINAL CONDITIONS

In Figure 3.4, the effect of the unanticipated final
constraint is illustrated. In this case, the final boundary

condition is not met.
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)
iy Figure 3.5 shows the proper handling of the final
% constraint. In this case, the unconstrained terminal 1

conditions are adjusted so that the final condition is

met with the saturated control.
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While the constrained control in Figure 3.5 does meet the boundary
conditions, the terminal condition is on the boundary of the reachable
set. Any additional change after the control is saturated (in the
direction away from the origin) cannot be controlled by the input. If
the control is going to saturate during the final phase, another
technique is shown in Figure 3.6. Here the control is placed on the
constraint until the switching time when unconstrained control is
allowed. This procedure will ensure that the control is in the linear
region for the terminal portion of the intercept and is a partial

alternative to the reachable state control algorithm presented in [6].

Summary

In summary, to optimally handle constraints two cases must be
considered. In the first case, a saturated control unsaturates prior to
the final time. Here, the use of the saturation function is the proper
control. In the other case, however, the control is such that it
saturates during the terminal stages of the intercept. Now, the fact
that the control is going to saturate must be considered. In the case
of the first order trajectory, this is handled by changing the final
time and boundary condition of the unconstrained portion of the
control. Reversing the time that the saturated and unconstrained
control is applied ensures that the target remains well within the

reachable set of the missile control.
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CHAPTER 1Y
NONLINEAR CONTROL LAW

Numerous attempts were made to incorporate the attitude dependence

of the engagement in a state space model by including the Euler angles
in the model formulation and exploiting the properties of the bank-to-
turn missile. If these angles could be included, the control laws would
be optimal in the dynamic-programming sense because the same optimal
control laws would be used in the future [17]. Considering that the
control inputs cause the change in the inertial and relative attitudes
and that the Euler angles describing the missile attitude and the seeker
angles describing the relative angular differences can be large, the
system matrices are time and control dependent. Consequently, the model
is nonstationary and the limiting solution of the algebraic Riccati
equation is not appropriate. Working directly with the Euler-Lagrange
equations, approximate methods such as singular perturbations and the
method of averaging were attempted [19,20,21]. But even with approxi-

mations, the result was a coupled set of nonlinear equations, and the

major value of the approximation methods was lost [22]. Consequently,
each effort was terminated when the assumptions and/or approximations !
required for a closed form solution invalidated the purpose of
1nc6rporating the increased complexity. The only result of these
tedious exercises was the author's agreement with Gupta et al. [6]:
"When the detailed translational and rotational missile model is used,

the resulting TPBVP [Two Point Boundary Value Problem] is so complex
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that it cannot be solved in real time even with the most advanced j

digital hardware”. ﬁ

Instead, since the major problem with the current guidance laws was I:

the unmodeled constraints, a scheme was developed that would incorporate ;

the optimal guidance laws and still apply the acceleration commands q

consistent with the control constraints. i

]

Guidance Law "4

The seeker gimbal angles provide a direct indication of the target- ;?
missile geometry. Using the seeker-to-missile body transformation

outlined in Appendix B and the dynamics approximations presented in

Appendix C, the following relationships can be derived:

wy = =P sin ¢g - (Nz/u) cos ¢g
= - 5 +
w, =P sin eg cos ¢g (Nz/u) sin eg sin g (Ny/u) cos eg
where = missile rotation about the seeker y axis

missile rotation about the seeker z axis

€
N
[

8, = seeker elevation angle

4g = seeker azimuth angle

N, = acceleration along the y body axis

N, = acceleration along the z body axis

PO Y

u = missile velocity along the x body axis

N vd

p = missile roll rate about the x body axis

These equations provide a method of generating the linear accelerations

';'u'<lu‘|.:

W b e N
,g, L

Lo Sl T

to control the missile's relative attitude by controlling the gimbal

g angles since the change in the seeker angles due to missile attitude is

v T
"
- a2 [}
.
NN . SRV




31 ,

R
. wy and w,- A positive rotation about either axis causes a negative
:_ﬂ change in the seeker angle. Therefore:
- 3 = - = 4
- g = -wy, = *p sin g * (N, /u) cos bg

1 = - = - + i - L

“’g w, p sin eg cos "’g (Nz/u) sin eg sin 4,9 (\ly/u) cos eg

. M S AR . e

Consequently, an “"attitude controller" can be developed using the

first order control laws from Chapter III and steering from the advanced

guidance laws. The inertial controls are used to generate the "optimal"

trajectory (not accounting for constraints). Then these relative

Aok,

Ei'-.: directions are rotated to the missile body axis and compared to the

existing seeker angles to determine the optimal seeker angles. These
optimal angles are used as boundary conditions for a constrained control

law that relates the angles to the control inputs.

Longitudinal Control

Setting the state equal to the seeker angle 9,, the control input

g’

to ég, and considering only longitudinal motion (p = Ny = 0) the wy
relationship leads to the following control: .
T, T :
(e + e ')o 20 |

t u
N, = - { o S

z al - ol o' - @ COS dbg 1

where eopt = the eg derived from the linear control law.

Lateral-Directional Control

S _Nl Setting the state equal to the seeker angle ¢g, the control
- input to 4';9, and solving for N, with p and N, equal to zero:

P )

(e + e'T)q,g 2

d’ot u
=t = T T} o5 6

e -e e - e g
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M
acceleration, the magnitude of this control is severely limited.

ROLL. While the gimbal angle ¢g is controlled by the N

Therefore, to handle this constraint, the control law must bhe expanded
to position the missile such that the N, acceleration can be used to
achieve the intercept. Since the gimbal angle bg is equal to the roll
angle difference between the maximum maneuver plane of the missile and
the relative target position, the azimuth angle can be used in place of
the roll angle difference to generate the roll rate command. Once the
roll rate command is incorporated, however, the approximation used in
the Ny equation is not always valid. When there is a large roll angle
difference, p will be the dominant control with a small contribution
from Ny (which will also help control adverse yaw on a higher order
system). As the roll angle difference approaches zero, the roll rate

will decrease while N, continues to control the gimbal angle ¢g during

y
the terminal phase.

T, T
(e’ +e ') ¢ 2 bopt

Pt {——t- 1)

e -e e -e€

Time-to-Go
Even though Rigg's algorithm improved the performance of the
advanced guidance laws, it continued to underestimate the time-to-go
during the initial segment of the trajectory. This is because the
algorithm neglected the attitude of the missile when setting the X
inertial acceleration to the actual acceleration (x body axis) of the

missile. Rigg's algorithm is repeated here:

2R
Ve + SQRT(Ve® + 4AR)

Tgo =

R IO
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where Tgo = time-to-go
| T, = time during which the missile is accelerating
t = time
R = range
V¢ = closing velocity
A = average acceleration

Amax = acceleration during boost

Arin = deceleration after burnout
As shown by Lee [23], the actual time-to-go is a function of the
trajectory (including constraints). While the constraints cannot be
easily handled, the difference between the inertial and body axis
accelerations can be corrected by considering the angular differences.
As seen from the Tgo formula, in addition to the estimate of
missile acceleration, the closing velocity (Vc) is used. This term is
. substituted for the X component of relative velocity in the
derivation. Vc, however, is along a vector from the missile to the
target and not in the X direction. If the Euler angles that describe
the missile's orientation are included in resolving the difference
between the X acceleration command and the missile orientation, the
result is a cubic equation containing the direction cosines, inertial
positions, velocities, and accelerations.

A simpler technique is to correct the closing velocity, and resolve

l‘ll 4 =
. LN
AR AR !
s 4 .l‘.'.‘. L
.
_

the component in the x missile direction. This is accomplished by
calculating the spherical angle (Aoff) between the missile x axis and

target and then using the x component of the closing velocity in the b

computation of the x commanded acceleration.




- 2
Aoff = tant {/_(_z____

=
n

A cos (Aoff)

where x = relative x distance to the target in the body axis frame.
y = relative y distance to the target in the body axis frame.
2z = relative z distance to the target in the body axis frame.

Another minor correction was made to the Tgo algorithm by
correcting the estimate of average acceleration which is A above. The
algorithm calculates this value and then, if the time is greater than
the motor burn time, the acceleration estimate is set to Amin. However,
if the time-to-go is less than the missile burn time, then the second
component, the deceleration term, is added to the acceleration term in
the computation of average acceleration.

A better acceleration estimate is calculated if all three cases are

considered separately:

1. intercept during the boost phase, time less than Tb;

Amax (Tb - t)

A= Tg0

2. intercept during the coast phase, time less than T,;

Amax(Tb - t) + Amin(Tgo + t - Tb)

A= Tgo

3. current time greater than accereration time;

A = Amin
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CHAPTER V -]

RESULTS ~d

J

‘1

Four topics have been discussed with respect to the control of the ;i
bank-to-turn missile. These are the effect of constraints on control, :

the linear optimal control 1laws, the improvement of the Time-to-go

estimate, and a nonlinear control law. The results of additional

‘lL' NNW
NNV

evaluations, the modifications incorporated, and the nonlinear control

law will be presented here.

Constrained Control

The four trajectories used to evaluate the effect of constraints

are shown in Table 5.1:

Table 5.1 Boundary Conditions

Injtial Terminal Condition .!
Trajectory Conditions Time Value .
1 1 0 0
2 0 0 1
3 1 0 0
.5 1
4 0 0 1
.5 0

L TR VNN e Ty
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Table 5.2 presents the cost for each of the trajectories. Here the
same terminology is used that was introduced in Chapter III. As seen
from the table, the optimal control is the minimum cost solution that
meets the final value when used with the trajectories that have a single
boundary condition (trajectories 1 and 2). Also as expected, a control
constraint increases the cost, even if it is handled in an optimal

fashion, if there is no change in the terminal boundary condition.

Table 5.2 Cost Function

Trajectory Control Cost Final Condition

1 Unconstrained 1.323 Yes
Suboptimal 1.325 Yes
Constrained 1.325 Yes

Reachable Set 1.325 Yes

2 Unconstrained 1.303 Yes
Suboptimal 1.243 No
Constrained 1.311 Yes

Reachable Set 1.392 Yes

3 Unconstrained 1.740 Yes
Suboptimal 1.654 No
Constrained 1.718 Yes

Reachable Set 1.722 Yes

4 Unconstrained .816 Yes
Suboptimal .816 Yes
Constrained 917 Yes

Reachable Set 1.312 Yes

The trajectories with changing terminal conditions, where the
constraint is never violated, however, display some unexpected
properties and have been included as Figures 5.1 through 5.3. First,
the optimal control may not lead to the lowest cost. If the control

expects to be on the constraint during the final portion of the
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trajectory, it increases the contral during the initial phase to insure
that the final condition is met. If the final condition is changed,
then the increased control may not have been required. In fact, the
increased control can result in a larger displacement from the new
terminal condition. The result is an overall higher cost for the .

complete trajectory. ]

Second, with a discontinuous boundary condition, the constraint may
not lead to an increase in cost. Again, this is a function of the
initial conditions and the change in the final condition. The
explanation for this effect is similar to the first in that the
constraint may keep the state closer to the second terminal condition.

While these are interesting observations, it should be noted that
the changes in the terminal boundary condition are quite severe and that
these effects are dependent on the changes and when they occur. Also,
if the boundary condition is within the reachable set, the only control
that can always meet the condition is the properly formulated optimal

control.

Linear Optimal Control

Generally, the performance of a guidance law for air-to-air
missiles is measured by the inner and outer launch boundaries. These
are defined as the minimum and maximum range from which the missile can
be launched and achieve a hit. The boundaries are a function of the

5; . initial conditions of the engagement such as speed, altitude, relative
attitude, and geometry. The geometry of the engagement is defined by
the off-boresight angle and the aspect angle. Figure 5.4 depicts these
angles. The off-boresight angles (OBA) are defined as the angles

PR I P PN SN P S Gl S i g
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Figure 5.4 ENGAGEMENT GEOMETRY

(azimuth and elevation) between the missile velocity vector and the
LOS. The aspect angles are defined as the angles, measured from the
tail of the target, between the target velocity and the missile LOS. In
all of the cases studied, the target and missile are co-speed (.7 Mach)
and approximately co-altitude (10,000 feet) at launch.

Previous work [1,9] with the linear optimal control presented by
Fiske [8] utilized an "evasive" target maneuver developed by the Air
Force Armament Laboratory. This maneuver has two phases. For a target
aspect angle less than 90 degrees (tail shot) at a range of 6000 feet,
the target accelerated into the missile at an angle of 45 degrees (down)
with respect to the vertical. For a target aspect angle greater than 90
degrees, the target also rolls into the missile, except that this time
the angle {s 45 degrees up with respect to the vertical. In each case,
at one second-to-go the target rolls to 180 degrees and accelerates down

(positive Z direction). Unfortunately, this is not a very evasive

maneuver. To begin with, by automatically rolling into the missile the
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maneuver actually reduces rather than increases the angular travel, the

A BRI G P S

line of sight rates, and the average acceleration required. Also, for

the short range shots, the fact that the target is maneuvering at a
45 degree angle while the missile is waiting for the clearance delay (.4
seconds) reduces the amount of ROLL required to place the target in the
primary maneuver plane. Recalling the limitations of the missile and
the formulation of the guidance laws, much simpler and more effective
maneuvers can be devised.

First, consider the implementation of the target used for this
evaluation of the Linear Optimal Control Laws. The target is a three
(3) dimensional, nine (9) "g" maneuvering target. In order to prevent
the computational burden of integrating target accelerations for ]
velocity and position, the target is mechanized by computing the radius

'y of curvature and the angular velocity of a constantly accelerating point

el heeinra,

and incorporating the equations as uniform circular motion. The plane 5

of maneuver for the target is determined by the target ROLL angle, an

2’ a .“'.'."‘.‘ o)

input parameter. When the maneuver 1is initiated, the center of

rotation, radius of curvature, and the coordinate transformations are g

computed. Then, the inertial positions, velocities, and accelerations ;
o are computed by transforming the maneuver plane motion, a simple @
. function of the angle of rotation referenced to the start of the R
9 maneuver, to the inertial reference system. ;
'é Using this target, a deterministic evaluation of the inner launch q

boundary was initiated using an improved six degree of freedom

PR R

simulation based on the simulation used in [1]. It soon became obvious

that the concept of 1inner and outer launch boundaries for these

missile/guidance law combinations did not apply. The launch boundaries
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are supposed to define an envelope within which the missile will
o intercept the target. This is not the case with the bank-to-turn
" missile and linear guidance laws. To illustrate this point, consider i
the trajectory shown in Figure 5.5. The launch range is 5000 feet, the
0BA is 40 degrees, and the aspect angle is 180 degrees. At launch, the
target begins a level 9 "g" turn away from the missile. Midway through

the flight, the guidance law essentially has the intercept conditions

met and reduces the acceleration commands. Toward the end of the

a3 attempted intercept, however, increased accelerations are required, the

missile control saturates, and the missile misses a relatively simple

intercept. The miss was not caused by a lack of maneuver capability,

1 i
) (ST, T
o RO

the basis for the launch envelope, but by neglected attitude dependent

constraints.
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Time-to-go

The incorporation of the modified Tgo algorithm significantly
improved the estimate of this parameter. Since the actual Time-to-go is
a function of the trajectory, and the trajectory is a strong function of
Tgo, it is not possible to directly compare the algorithms. Therefore,
a comparison of the actual Time-to-go and the estimate of Tgo can be
made for trajectories with the same initial conditions.

After the simulated intercept, the time of the closest approach
(final time) was calculated. Simulated time was then subtracted from

the final time to determine the actual Time-to-go. This value is then

compared to the estimate of Tgo generated during the simulation.
Repr=sentative results are presented in Figures 5.5 to 5.8. In these
figures, the actual and estimated Time-to-go is nlotted versus the time
from launch. Figures 5.5 and 5.6 came from a run with an azimuth 0BA of
40° and aspect of 180° and an initial range of 7000 feet. Figures 5.7
and 5.8 are from the same geometry with an initial range of 5000 feet.

The first set of Tgo figures represents a relatively easy
trajectory where the missile actually reverses its initial direction of
acceleration during the intercept. Since Riggs' algorithm overestimates
the closure velocity, it consistently underestimates the Time-to-go.
The modified algorithm assumes that an intercept has been established;
therefore, it wiil under or overestimate the Time-to-go depending on
whether the missile is leading or lagging the target.

The Tgo plots for the 5000 foot initial conditions illustrate tha
performance for a more difficult trajectory. Here, the average missile
acceleration is higher and it consistently lags the target. Since a

true intercept condition is not established until late in the intercept,
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the absolute performance of the modified Tgo algorithm is not as good as
the easier trajectory. Two points should be noted however. Just as in
Riggs' algorithm, the Time-to-go is underestimated during the higher “g"
trajectory when the missile is lagging the target. This error leads to
higher accelerations, and if possible, an intercept. Consequently, the
estimate results in a stable trajectory and the error will decay in
time. Also, the absolute estimate error is always smaller than Riggs'
algorithm. Table 5.3 presents the average Tgo errors for the four

trajectories presented in the figures.

Table 5.3 Average Tgo Estimate Errors

Initial Range Algorithm Average Error
7000 Riggs' 21
Modified .07
5000 Riggs' .26
Modified .16

Nonlinear Control Laws

The final item to be covered is the performance of the nonlinear
control law derived in Chapter 4. The control law, along with Gl, (and
an improved pro-nav guidance law) were incorporated in the simulation

outlined in Appendix C. The simulation was verified and compared

remarkably well with the larger, more complex simulation discussed
previously. (The complex simulation predicted a 75 foot miss at 3500
feet versus a 193 foot miss; other results were closer.)

The trajectory presented here has the same initial geometry as the

previous engagements--40 degree 0BA with a 180 degree aspect angle. The

? l.’l
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initial range varies from 3400 feet to 7000 feet.
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The performance of the nonlinear control law was significantly
better than Gl. First, the nonlinear, or Bank-to-turn (BTT), law was
able to achieve a hit (miss distance less than 20 feet) inside the range
of Gl. Secondly, in every case where Gl was able to score a hit, the
miss distance of the BTT control law was at least 25% of Gl. Also,
throughout the trials, the BTT accuracy was consistent while the
performance of the linear guidance laws was quite erratic. And third,
the time to intercept for the BTT law was less than the linear control
law.

Four launch ranges are presented: 3400, 3500, 5000, and 7000

feet. Table 5.4 summarizes the results of these launches.

Table 5.4 Control Law Performance

Initial Control Miss Time
Range Distance (sec)
(feet)

7000 Gl 19 2.75

BTT 4 2.61

5000 Gl 37 2.20

BTT 4 2.15

3500 Gl 193 1.75

BTT 5 1.65

3400 BT 52 1.70

The details of any number of trajectories could be presented, but
the most finstructive are the runs from 3500 feet. Figures 5.10 and
5.108 contain the trajectory and acceleration commands for the BTT
simulation, and Figures 5.11A to 5.11B have the results of Gl. Since

both sets of Nz commands are saturated for most of the trajectory and
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BTT only deviates 22 feet in altitude, it is obvious that a hit could 15
not be achieved from a shorter initial range unless the roll rate is i;
increased to allow a quicker roll and turn. The reason for the improved i;
performance is also clear. Neglecting the constraints in the guidance i§
law results in a rolling attack as the acceleration vector is rotated by o

unequal limits. Consequently, it is more difficult to control the roll
angle which is the real control over the direction of the acceleration
vector, and roll rate commands stay large during the run. Since the BTT
control Taw generates a ROLL command consistent with the N, command, the
ROLL angle is properly regulated, and roll rates decrease to 5 to 7

degrees per second during the terminal phase of the intercept.
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CHAPTER VI
CONCLUSIONS

This research has identified and corrected a major shortcoming in
the formulation and implementation of advanced guidance laws for a Bank-
to-turn missile. The Bank-to-turn (BTT) guidance law was demonstrated
on a six degree of freedom simulation developed to support the analysis
of advanced guidance and control laws.

The most significant limitation of the advanced guidance techniques
was the neglect of inequality constraints on the control variables.
These effects were evaluated using a one-dimensional model that
highlighted the effects of the constraints and identified a method to
incorporate them in the formulation of the guidance law. The most
significant conclusion is that while control saturation is optimal for
an initial constraint, final constraints pose particular problems and
must be anticipated by adjusting intermediate boundary conditions for
the unsaturated portion of the trajectory.

A careful analysis of the trajectories that result from the linear
guidance laws indicated that the launch envelopes determined by past
research were not completely correct. In fact, an evading target could
use the 1limitations 1imposed by the missile acceleration control
constraints and generate a miss even in the heart of the missile launch

envelope.
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Rigg's algorithm, used in the computation of the Time-to-go, was
improved by accounting for the angular differences between the velocity
vector of the missile and the direction of the target.

Lastly, the incorporation of the first order terminal controller
mentioned above as an "“attitude" controller resulted in a nonlinear
Bank-to-turn guidance law that exhibited exceptional performance. The
guidance law was able to limit the miss distance to four or five feet
inside the launch envelope, shorten the time of flight when compared to
linear guidance, and decrease the inner launch boundary to a point where

a near constant maximum control still resulted in a hit.




APPENDIX A
TASC LINEAR GUIDANCE LAWS

The linear guidance laws Gl and G2 developed by Fiske [8] are
reproduced here to provide an indication of the type of control laws
under discussion. Guidance laws G3 and G4 are an extension of Gl and G2

that add first and second order missile dynamics. As a result, they

contain numerous additional terms and do not provide additional insight

into the form of the guidance laws. Consequently, they are not

repeated, and the reader is referred to [8]. Although Riggs and Verges

[11] continued with the work of [8] and studied guidance laws GL1-GL8, a
these are not the same set of guidance laws but are Gl and G2 with j
different Tgo computation. g

Since the attitude of the missile was not considered, the guidance ;

laws are the same for each direction. Only the X direction is given,

&

the remainder are similar.

Guidance Law--Gl

AP - WA

s

: 2
E . Nx = { 3(T90) } X + { 3(T90) } vx

3y + (Tgo) 3y + (Tgo)
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Guidance Law--G2

2
Nx = { 3(TgO) } X + { 3(T90) } vx

3y + (Tgo) 3y + (Tgo)
3(Tgo) e + xT(Tgo) -1
+ { 3 } Apx

3y + (Tg(S3 A

T
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APPENDIX B
COORDINATE TRANSFORMATIONS

This appendix outlines the coordinate transformations used for the
N control 1laws and the simulation and is included to clarify the
. relationships of the various references. Unfortunately, there is no

standard set of Euler angles. Confusion arises from the use of left-
;' handed systems as well as the order, direction, axis, and reference of
the rotations. The following set of Euler angles is not the

“conventional" set as defined by Goldstein [24] but follows the

convention outlined in [25,26,27]. F
Definitions
Missile Euler Angles (Figure 5.1) l
Those rotations, in the order of YAW, PITCH, and ROLL, are required
to re-orient the missile from the inertial reference frame to the
S current body frame orientation. The inertial reference is defined as {

the orientation of the body axis at time zero.

The body axis system is fixed to the center of gravity of the

missile with the positive x axis pointing forward along the fuselage

reference 1ine. The positive z axis points downward toward the bottom
of the vehicle, with the y axis completing the right handed system (out :
the right side). ‘

YAW ¢: The angle between the projection of the x body axis onto the
inertial XY plane and the X inertial axis.

PSP WPy
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P P

PITCH o: The angle measured in the vertical plane between the x body

o axis and the inertial XY plane.

ROLL ¢: (Bank) Angle measured in the yz plane of the body system
between the y body axis and the YX inertial plane.

Seeker Angles (Figure B8.2)

The orientation of the seeker line of sight (LOS) and missile body

axis are defined by seeker gimbal azimuth and elevation angles ¢g and

Bgs respectively.

GMB PSI bg* The angle between the projection of the LOS onto the

missile xy plane and the X body axis.

W PRLBETW RAI JON )

GMB THT eg: The angle between the LOS and the missile xy plane. i
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Transformations :
Missile Inertial to Body Axis )

YAW: YAW is a clockwise rotation about the inertial Z axis while
looking in the positive Z direction. 3
3

X
'

i
v il
Y
-
A "’
g
Figure B.3 YAW ANGLE ROTATION “
X
x' cos ¢ sin ¢ 0 X :‘:
y'| = [-sing cos ¢ 0 Y |
z' 0 0 1 z .

PITCH: PITCH is a clockwise rotation about the current y' body axis

while looking in the positive y' direction.

XII
0 X'
3
7
zl Z" '.‘
¥
Figure B.4 PITCH ANGLE ROTATION g
)
" 1 _;
X cos o 0 -sin 8 X -]
y“ = 0 1 0 y' ‘
2" sin o 0 cos © 2' ‘
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{i ROLL: ROLL is a clockwise rotation about the current x" axis while

e looking in the positive x" direction.

N Yy
- ¢
y
Z 2"
d Figure B.5 ROLL ANGLE ROTATION
- X 1 0 0 X"
o yl] = |0 cos ¢ sin ¢ y"
) z 0 -sin ¢ cos ¢ z"

Combining the three rotations in the proper order generates the general

transformation from inertial to body coordinates:

Zf_ COS8 COS¢ coso sing -sing

N D= sing sitne cos, - cose sing sing sind sing + cose cosy sing cose
» cose sine cusy + sing sing cos¢e sind sing - sing cos¢ COS¢ €OSO
¢ Since the transformation is orthogonal, the transformation from body to
?' inertial is the transpose of D.

Missile Body to Seeker LOS

Seeker Azimuth: The seeker azimuth angle, gimbal psi (¢g), is a rota-

_ JUNSIA

tion about the 2z body axis while 1looking in the

positive z direction.

_4)->A,_;;.;;
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y
Figure B.6 GIMBAL AZIMUTH ANGLE ROTATION

X cos ¢g sin ¢g 0
(] - - ry
sin ¢g cos ¢g 0 y
z' 0 0 1 z

Seeker PITCH: The seeker PITCH, gimbal theta (eg), is a rotation about

the y' seeker axis while looking in the positive y'
direction.

Figure B.7 GIMBAL PITCH ANGLE ROTATION

Xs cos eg 0 -sin eg x'
Ys z 0 1 0 y'
1s sin o 0 cos o 2!

9 9
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3 Consequently, the final transformation from the body to seeker reference

(_. is:

N cos 0, cos ¢

cos eg sin ¢ -sin o
A SEEK

§ g g 0 g
-sin ¢ cos 4

sin 8_ cos ¢ sin _ sin ¢ . CO0S O

9 9 9 9 9

:..“&'...._., 4
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APPENDIX C 5
SMALL SIMULATION

Ah Dol o o o

Appendix C presents the approximate equations of motion and code

> for the first order missile simulation. The appendix is divided into

three sections: the equations of motion, the seeker model, and the

simulation.
{; Missile Equations of Motion
:E The first section contains the derivation of the approximate
é equations of motion used in the simulation to transform control inputs
to inertial Euler angle rates.

Using the Euler angle definitions of Appendix B, a transformation
can be derived that accounts for the effect of the control inputs,
1inear accelerations, and roll rate on the inertial attitude of the
missile [26,29].

Two sets of relationships are required. The first is the
transformation between the body axis rates: p, q, and r, and inertial

'; Euler angle rates § & ¢. The second relationship is rhe response of the
:; missile to input commands. The following derivation follows [26].

rd

’g Definitions

'E The l1inear velocity of the missile, expressed in terms of body axis
' coordinates 1s: Vo=ul+ v+ wk

where u = forward velocity

v = side velocity
= vertical velocity
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The angular velocity of the missile also expressed in the body reference

system is:
w=pi+qj+rk
where p = ROLL rate
q = PITCH rate
r = YAW rate

Angular Velocity Transformation

Because the Euler angles are defined in YAW, PITCH, ROLL sequence,
this sequence must be maintained in determining the angular velocity

transformation.

Resolve components of YAW rate ¢

In the case of straight and level flight, the inertial axis system
remains aligned with the z body axis for all ¢, therefore,

r=g.

Z,}

Figure C.1 YAW RATE COMPONENTS--LEVEL
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With a positive PITCH attitude, the missile J, has components on

both the x and z body axis while the pitch rate is not affected.

= -¢ sin o

-
[

¢ cos @

-
"

Figure C.2 YAW RATE COMPONENTS--PITCH UP
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and ROLL rate components are:

$ cos & sin ¢

L
1]

$ Cos 8 cos ¢

-~
[}

9:$ cos § sin &

r=yicos § cos &

Figure C.3 YAW RATE COMPONENTS--ROLL

i
2
-
r.
s
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A ROLL angle will not change the effect of ¢ on p, and the PITCH
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Resolve components of PITCH rate §

With the missile in a positive PITCH attitude, it can be seen
immediately that the YAW angle will not have any effect on the
resolution of the inertial PITCH rate. Also, when pitched up, the y
body axis remains in the X-Y inertial plane. Consequently, an inertial

PITCH rate will equal the body axis rate:

q=8

Figure C.4 PITCH RATE COMPONENTS--PITCH

Once the missile has a nonzero ROLL angle, components of & will

show up as:

= § cos . '
q ¢ rz=@ sinc \\
r=-4sing = N

Q_‘”\ \\/ )

/
# 7= 6 cos &

Figure C.5 PITCH RATE COMPONENTS--ROLL
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Note that the body axis ROLL rate p is not affected by & since § is ]

@ measured with respect to an axis orthogonal to the x body axis.

Py A
r LR '

Resolve the components of ROLL rate &

Since 5 is measured along the x body axis by definition, it will

l")'

affect the value of p only.

p=b
- Combined Transformation
‘? The components of the inertial angular velocities with respect to
- the missile body axis can be combined to give the following L
| transformation:
5 p 1 0 -sin o 6
2 q) = [0 cos ¢ sin ¢ cos 6| |8
r 0 -sin ¢ cos ¢ cos 6/ \¢
Eé Inverse Transformation
= In order to account for the affect of the control inputs on the
attitude of the missile, the inverse of the above transformation is
) needed. The determinant of the transformation matrix, however, is equal
f§ to the cos 8. Consequently, at +90 degrees of PITCH, the inverse of the
:7 transformation 1{is not defined, but from the geometry of the
transformations, the inverse can be seen to be:
b=p
5 8 = q

$ =
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When the cos 9 # 0, then the inverse of the transformation can be

computed as:

b 1 sin ¢ tan @ cos ¢ tan @ p
8] = [o cos ¢ -sin ¢
$ 0 sin ¢/cose cos ¢/cose r

Missile Dynamics

In order to determine the effect of control inputs, the equations
of motion of the missile must be analyzed. Since the missile has six
(6) degrees of freedom (forward, sideways, and down translation as well

as the PITCH, ROLL, and YAW rotation), six simultaneous equations are

required. Using the linear force and moment relationships expressed in ;
an accelerating reference frame (with (dV/dt); = (dV/dtlg + w x V), the ;
following equations can be derived [25,26]: !
Fo=mld + qw - rv) ;
- F, = m(w + pv - qu)
23 Fy = m(v + ru - pw)
5 Gy =qly-opr(lz-1Ix)+ (p2 - r?) Ixz
G, =P Ix+aqr(Iz - Iy) - (F+ pq) Ixz
G, = r Iz +pq (ly - Ix) - (gqr - p) Ixz é
1

Here, the left hand side represents applied forces (Fi) and moments (Gi)
while the right hand side provides the missile response as a function of g

moments of inertia and body referenced velocities.
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Equating the applied accelerations to the control inputs, and

incorporating the inverse transformation (8 # 90°):

N\ = [u 0 w -v 1 0 -sin 9 s
Nz|] = [w] # | v -u 0 0 cos¢ singpcosol |3
Ny/ = \v -w 0 u 0 -sin¢ cos ¢ cos 8/ \¢

This set of equations, however, cannot be used to determine the attitude

dynamics resulting from control inputs since the inverse of:

0 WCos ¢ + vV sin g w sin ¢ cos 6 - v COS ¢ Cos O
v -u COS ¢ -v sin 6 - u sin ¢ cos 9
W -u sin ¢ W sin e - u cos ¢ cos @

does not exist.
Using the applied accelerations:
F /m= Uu+aqw-rv
F/m= W+ pyv - qu
Fy/m =V +ru-pw
and restricting the missile velocities to the x (forward) direction

only, then

and N, =u N, = -qu ﬂy = ru

These assumptions remove higher order dynamics about the center of
gravity of the missile (Dutch roll, Short Period, Phugoid Oscillations,
and Directional/Spiral Divergence) but still allow dynamics associated

with the center of gravity.

............
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Using these approximations and the inverse angular velocity

transformation, we have the following relationships:

6 =p - sin¢ tan o (Nz/u) + cos ¢ tan o (Ny/u)
8 = -cos ¢ (Nz/u) - sin ¢ (Ny/u)
¢ = -sin ¢/cos 0 (Nz/u) + cos ¢/cos & (Ny/u)

Seeker Model

While the above relationships provide the necessary equations to
model the missile motions, the missile actually uses a seeker to
determine the relative position of the target. Consequently, a seeker
model is required. Rather than model the internal motions of the seeker
gimbals, seeker error sources, and the stabilization loops [7], a
simplified approach is taken where the LOS angles are propagated via:

GMB Theta

DLOSQ - wy
GMB Psi

DLOSR - w,
where DLOSQ = PITCH 1ine of sight rate

DLOSR = azimuth line of sight rate
wy = Missile motion affecting eg
Wy = Missile motion affecting ¢g

The LOS errors are determined by calculating .the difference in the
predicted target location (using Gimbal angles), and the actual target
location (using simulation results). Assuming a type 1 system, the
feedback transfer function from eg (or ¢g) to tracking angle error ¢

(assuming perfect stabilization and no abberations) is

.........
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Then, at low frequencies, the LOS rate is proportional to the tracking
error [7]. Therefore, the gimbal errors are used with a proportionality
constant to determine the LOS rate. Gimbal motion due to missile
angular velocities, w

Y
seeker coordinate system.

and w,, are simply body rates transformed to the

Simulation

The simulation consists of a 15 state model that is propagated
using an Adams Predictor-Corrector [19,28] with a Runge-Kutta start
up. The equations of motion are contained in the subroutine MODEL while
other routines are used for initialization and output. The states are
relative cartesian positions and ve]ocities,'target ROLL angles, missile
Euler angles, and missile gimbal angles. Inputs are linear
accelerations N, Ny, N,, and missile ROLL rate.

The simulation is divided into three (3) parts so that it can be
run on a microcomputer in 40K COM files. The code, however, is ANSI
standard FORTRAN and with two changes for file handling, was run on a
VAX 1170. The first part initialized the variables and simulated the
trajectory. Data were stored in two data files W1.DAT and PLOT.DAT.
These files were read by the second and third programs for data
reporting, postflight miss distance, Tgo analysis and plotting. Since
most of the subroutines are straightforward input-output, they are not
included. The code used to initialize the routines and the subroutine
MODEL is included for illustrative purposes.

As mentioned earlier, the simulation had 15 states: the usual nine

(9) for cartesian positions, velocities, and accelerations, two (2) to

propagate gimbal angle dynamics, one (1) (unused) for target ROLL angle,
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and the remaining three (3) for the missile Euler angles. Linear states :
are propagated without the effects of inertia or drag. But if the

angular states were also propagated by assuming an instantaneous and ]

perfect response without damping, excessive rates would develop.
Therefore, it became obvious that the bandwidth of the angular

velocities had to be limited in order to produce reasonable results.

Since the effects of the linear accelerations on the angular rates no
included a delay, the direction of the missile indicated by missile
velocities and Euler angles was no longer consistent. Since each was
propagated independently, by the end of the run, a three to five degree
discrepency would develop between them. In effect, there were too many
states. Consequently, at each update, the Euler angles are corrected to

agree with the angles generated by the linear velocity terms.
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SUBROUT INE MODEL(TIME,YONE,YPRIME ,HIT)
IMPLICIT REALX8 (A-1,K-2)

LOGICAL HIT

REAL PLOTX1,PLOTX2,PLOTY1,PLOTY2,PLOT21,PLOTZ2

REAL MINX,MINY ,MAXX,MAXY

INTEGER I ,N,JSTATE,JINPUT,JCNTRL ,JTIME,JLIMIT,JROLL ,JOB
INTEGER INCHX, INCHY ,NPLOT ,NPTS

DIMENSION YONE(15) ,YPRIME( 15)

COMMON /PLOT/PLOTX1(25) ,PLOTX2¢25) ,PLOTY 1(25) ,PLOTY2¢(29) ,
1PLOT21¢(25) ,PLOTZ22¢25) ,NPLOT ,NPTS

COMMON /TRGT/TRG X1,TRG Y1,TRG 21,

1TRG UXI,TRG VYI,TRG V21,
2TRG AXI,TRG AYI,TRG AZI

COMMON /SET/ALTIDO,GMB THe,GMB PS@,RNG8,TRG V@,

1ASP TH@ ,ASP PS8 ,MSL ve,THET®,PHI@,PSI8,TH8,CSPSIA,SNPSIA,
2SNTH8 ,MISS DS,STEP,DLAY SW,TRG XI8,TRG YI18,TRG 2l@,
3TX0,TY0,T20,0LD T,TRG PS@,TRG THO,TRG PHI,JMAN

COMMON /MSL/Y( 1%) ,UC4) ,TGO HT,RNG I,UC

COMMON /OUT/W1(25,25)

COMMON /SEEK/ SEEK 11,SEEK 12,SEEK 13,SEEK 21,

1SEEK 22,SEEK 23,SEEK 31,SEEK 32,SEEK 33,0L0SQ,DLOSR
COMMON /OPTION/ JCNTRL,JTIME,JLIMIT,JROLL

TRIG FUNCTIONS FOR DEGREES

SIN DG(X) = DSIN(DG TO RD ¥ X)
C0S DG(X) = DCOS(DG TO RD %X X)

GRAV = 32.1725

DG TO RD = .8174532925
RD TO DG = 57.29377951
PI = 3,141592654
TWOPI = 4,283183367

E= 2,7182818

TARGET CONSTANTS

NMAX = 9.0
MISSILE/AUTOPILOT CONSTANTS

W PHI = 13.
W THETA = 135.
W PSl = 13,
LAMDA X = 10,
LAMDA Y = 18,
LAMDA 2 = 10,
AMAX = 380.
AMIN = -38.
OURAT = 2.6
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DLAY SW = 6.4

GAMMA = {E-4

NZ MAX = 1808.%XGRAV
NY MAX = 5.XGRAV

P MAX = 500.%X06 TO RD
MSL XI = YONECD
MSL Y! = YONE(2
MSL 21 = YONE(3
MSL UXI = YONE(4)
MSL VY1l = YONE(D)
MSL V21 = YONE(&

LIMIT ANGLES TO 2 % Pl

PHI = YONE(S)

CONSTRAIN PSI & THETA TO VELOCITIES

MSL IXY = DSQRT((MSL UXIXX2> + (MSL VUYIXX2))

PS1 = DATAN2(MSL VYI ,MSL UXD)
THETA = DATAN2(-MSL VZI ,MSL IXY)
YONE(?) = THETA

YONE(19) = PSI

D PHI = YONECID

D THETA = YONE(12)

D PSI = YONEC(13)

GMBTHT = YONE(14)

GMBPSI = YONE( 1S
IFC(DABS(PHI) .GT.TWOPI>PHI = PHI -
IDSIGNC(TWOPI ,PHI) XDINTC(TWOPI/PHI)

IF(DABS(THETA) .GT.TWOPI) THETA = THETA -

1DSIGNCTWOPI , THETA) XDINTC(TWOPI/THETA)
IFC(DABS(PSI) .GT.TWOPI)PSI = PSI -
IDSIGNC(TWOPI ,PSI) XDINT(TWOPI/PSI)

IF(DABS(GMB THT) .GT.TWOPI>GMB THT = GMB THT -

IDSIGN(TWOPI ,GMB THT) XDINT(TWOPI/GMB THT)

IF(DABS(GMB PSI) .GT.TWOPI)GMB PS! = GMB PSI -

IDSIGN(TWOPI ,GMB PS1) XDINT(TWOP1/GMB PSI)

INERTIAL TO BODY DIRECTION COSINES

D11 = DCOSC(THETA) XDCOS(PSI)
D12 DCOS(THETA) XDSINC(PSID)
013 = DSINC(THETA)

D21 = DSINCPHI) XDSINC(THETA) XDCOS(PSI)
1 DCOS(PHI) XDSINC(PSI)

............

..............
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D22 = DSIN(PHI) XDSIN(THETA) XDSINC(PSI)> +
1 DCOS(PHI)> XDCOSC(PSID)
D23 = DSIN(PHI) XDCOS(THETA)

D31 = DCOS(PHI) XDSIN(THETA) XDCOS(PS1) +

1 DSINCPHI) ¥XDSINCPSI)

D32 = DCOS(PHI)> XDSINCTHETA) XDSIN(PSI) -

1 DSIN(PHI) ¥XDCOS(PSI)

D33 = DCOS(PHI) ¥XDCOSC(THETA)

COMPUTE BODY COORD VELOCITY (BODY TO INERTIAL)

MSL UXB = DSQRT((MSL UXIX%X%X2) + (MSL VUYIX%2) + (MSL VZ1xXx%X2))
CHECK FOR SINGULAR INVERSE

IF(DABS(THETA-(P1/2.>) .LE.DG TO RD> GOTO jo@

0O OO0 000

All
Al2
A21
A22
A31
A32

DSINC(PHI) XDSINCTHETA) /(DCOS(THETA) XMSL UXB)
DCOS(PHI) XDSINCTHETA) /(DCOS(THETA) XMSL VXB)
DCOS(PHI) X( 1/MSL UXB)

DSINCPHI) %( 1/MSL UXB)

DSIN(PHI) /(DCOS(THETA) ¥MSL VXB)

DCOS(PHI) /(DCOSC(THETA) ¥MSL UXB)

1860 CONTINUE
COMPUTE PITCH RATES IN BODY AXIS

o000 O

PM = D PHI - D PSIXDSINCTHETA)
QM = D THETAXDCOS(PH1)> + D PSIXDSINCPHI) XDCOSCTHETA)
RM =-D THETAXDSIN(PHI) + D PSIXDCOS(PHI) XDCOS(THETA)

c
c 3 36 36 3 36 36 3 36 J6 3 36 36 3 36 36 3 36 36 36 3 36 36 € 36 36 2 36 36 3 36 36 36 3 36 2 3 36 ) 6 3¢ X X % X X X %
c % % % % %% % %
C % 3% % % Target Equations of Motion %% % %
c % 3 % % XXX X
c HERANAREEXXXEEAXREEHAXRHEEXREERAXXEEXXX XXX XXX X
c

IF(RNG 1.LE.4600.)G0TO 200
c

TRG XI = TRG UX] ¥ TIME + TRG Xle

TRG YI = TRG VYI ¥ TIME + TRG Yl@

TRG 21 = TRG VZ1 ¥ TIME + TRG Z1@
c

TXO = TRG XI

TYO = TRG YI

TZ0 = TRG 21
c

OLD T = TIME
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JMAN = @

GOTO 3086

CONT INUE

IF(JMAN.EQ. 1) GOTO 25e
INITIALIZE MANUEVER
COMPUTE TARGET ROLL ANGLE

+ TRG PHI = RIGHT ROLL
= TRG PHI = LEFT ROLL

IF(TRG PHI.GE.188.>) TRG PHI = TRG PHI - 340.
IF(TRG PHI.LE.-180.) TRG PHI = TRG PHI + 340.

DETERMINE THE RADIUS OF CURVATURE & ANGULAR VELOCITY

TRG R = (TRG V8xXX2)/(NMAXXGRAV)
PS DOT = RD TO DG ¥ TRG V8/TRG R

COMPUTE DIR COSINES FOR AXIS OF ROTATION
BODY TO INERTIAL

DT11 =COS DG(TRG TH@) XCOS DG(TRG PS@)

DT21 =COS DG(TRG THO@) XSIN DG(TRG PS®)

DT31 =-SIN DG(TRG TH®@)

DT12 =SIN DG(TRG PHI)XSIN DG(TRG TH®@) ¥C0OS DG(TRG PS@)
1 -CO0S DG(TRG PHI)> XSIN DG(TRG PS@®>

DT22 =SIN DG(TRG PHI) XSIN DG(TRG THO) XSIN DG(TRG PS®)
1 +C0OS DG(TRG PHI) %XCOS DG(TRG PS@)

DT32 =SIN DG(TRG PHI) XCCS DG(TRG THO)

DT13 =CO0S DG(TRG PHI)XSIN DG(TRG TH@) XCOS DG(TRG PS®)
1 +SIN DG(TRG PHI)%SIN DG(TRG PS@)

DT23 =CO0S DG(TRG PHI) XSIN DG(TRG TH@) XSIN DG(TRG PS@>
1 -SIN DG(TRG PHI)> ¥COS DG(TRG PS®)

DT33 =C0S DG(TRG PHI) XCOS DG(TRG TH@)>

COMPUTE TX16,TY10,T218 (ORIGIN FOR ROTATION)
XP = @,

YP = 9.
ZP = =TRG R

TXI@ = DT11%¥XP + DT12%YP + DT13%2P + TXO
TYI® = DT21XXP + DT22%YP + DT23%2P + TYO
T210 = DT31%XP + DT32%YP + DT33%2P + T20
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RESET TRG PS8 FOR NEW SYSTEM

TRG PSe = @.

o OO0

YP
VYP
- AYP

JMAN = 1
2568 CONTINUE

TRG PS = TRG PS8 + PS DOTX(TIME-OLD T

0O O O 0

2P =
YZP =
5 AZP =

TRG RXCOS DG(TRG PS)
- TRG VOXSIN DG(TRG PS>
-((TRG VB%%X2)/TRG R) ¥COS DG(TRG PS)

-
PRSI — 4
Vatt .

XP =
UXP
AXP

TRG RXSIN DG(TRG PS)
+ TRG VOxXCOS DG(TRG PS)
=((TRG VBxx2)/TRG R)XSIN DG(TRG PS)

TRG
TRG
TRG

Ty
¢ 9
(9]

b TRG
TRG
TRG

B}
PLEFEEE M Y

X1
Yl
21

ODT11XXP +
DT21%XP +
DT31XXP +

UXI = DT11XUXP
VYl = DT21%VUXP
V21 = DT31%XUXP

DT12%XYP + DT13%2P
DT22XYP + DT23%ZP
DT32%XYP + DT33%ZP

+ DT12%XVYP +
+ DT22%XVUYP +
+ DT32XVYP +

DT 13%V2ZP
DT23%VZP
DT33xV2ZP

% TRG
.. TRG
N TRG

DT 12XAYP +
DT22%AYP +
DT32xXAYP +

AX] = DT11XAXP +
AY]l = DT21%AXP +
A2l = DT31XAXP +

DT 13%A2P
DT23%AZP
DT33%AZP

X! = TRG X1 + TX1@
Yl = TRG YI + TYl®
21 = TRG 21 + TZle

o~ TRG
TRG
TRG

3 2 3 3 % 2 3 2 3 X X 3 3 3 3 X X 2 J J X X 6 K J X X X X X K K X X 3 K X X X KX K XX %%
%% %% XX XX
% 3 % % XXX %
% % % XXXX%
3 36 36 36 3 26 % 36 36 2 K 6 3 X 3 3 3 3 X 3 X X % X X J 5 2 X X 3 2 3 X X K K X X X X X X X X % %

Relative Target-Missile Pos & Vel

i)
R

300 CONTINUE

Chte
LI ™

0O HO0O0OO0O0O0

Y
Lol

- MSL XI
- MSL YI
- MSL 21

Xl HT =
Yl HT =
21 HT =

TRG X1
TRG YI
TRG 21

.
i

e
.t
H

-
d
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c
RNG XI = XI HT
RNG YI = YI HT
RNG 21 = 21 HT
c
RNG I = DSQRTC((RNG XI%¥X%X2)+(RNG YIX¥X2)+(RNG ZI%%2))
c
c CHECK RNG 1
c
IF(DABS(RNG 1) .LT.MISS DS)HIT=.TRUE.
IF(DABS(RNG I) .LT.MISS DS)WRITE(1,1010)
IF(DABS(RNG I).LT.MISS DS)RETURN
c
UXI HT = TRG UXI - MSL VUXI
VYI HT = TRG VYl - MSL VYl
V21 HT = TRG V21 - MSL VZ1
c
VC = (TRG VXI - MSL UXI) % (RNG XID
1 +(TRG VY1l - MSL VY1) %X (RNG YD)
2 +{(TRG VZI - MSL VZI) ¥ (RNG ZD)
Ve = VC/RNG !
c
c CHECK VC
c !
IF(VC .EQ.8.)HIT=.TRUE.
IF(VC .EQ.0.)WRITE(1,1008)
IF(VC .EQ.@.)RETURN
c
c DETERMINE IF HIT
c
IF(RNG I - DABS(VC) XSTEP.LE.MISS DS)HIT=.TRUE.
c
c CALCULATE THE INTERCEPT ASPECT ANGLE
c
UXB HT = D11%XTRG VX1 + D12XTRG VYI + DI3XTRG V21
VUYB HT = D21%XTRG UX] + D22%XTRG VYl + D23%XTRrRG VZI
VZB HT = D31%XTRG VX1 + D32XTRG VYI + D33XTRG VZI
VBX2 = DSQRT((UXB HT%*X%2) +(VZB HT%%2))
UB HT = DSQART((UBXZXX%2) +(VYB HTX%XX2))
c

INT ASP = DATAN (VUZB HT/VXB HD
INT ASP = INT ASP + GMB THT
IF(UXB HT.LT.8.) INT ASP = Pl - INT ASP

3 3 3 36 3 3 36 36 3 3 36 3 X 36 JE X 3 36 X 36 3 X 36 36 J X 3 3 3 36 X X X I 3 X 3 X X X% X X X X X %%

L % % % % ¥% 3 % %
o %3 % X% Seelker Module %X X%
{f %% 3% % % % % %

36 36 36 36 26 36 36 3 3 36 36 3 36 36 36 3 36 3 36 36 3 3 36 3 3 3 3 3 X J 3 X 3 X X 2 3 X 6 X X X X X X X %

o0O000000
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CONTINUE

SEEKER ANGLES (BODY TO SEEKER)

SEEK 1t = DCOS (GMB THT> ¥ DCOS (GMB PSI)
SEEK 12 = DCOS (GMB THT) % DSIN (GMB PSI)
SEEK 13 =- DSIN (GMB THT)

SEEK 21 =- DSIN (GMB PSI>

SEEK 22 = DCOS (GMB PSI)

SEEK 23 = 0.

SEEK 31 = DSIN (GMB THT)> ¥ DCOS (GMB PSI)
SEEK 32 = DSIN (GMB THT) % DSIN (GMB PSI)
SEEK 33 = DCOS (GMB THD

RNG XB = DI1XRNG XI + DI2XRNG YI + Di13XRNG ZI
RNG YB = D21%XRNG X1 + D22X%XRNG YI + D23%XRNG ZI
RNG ZB = D31%¥RNG X1 + D32XRNG Y! + D33%XRNG 2!

RNG BXY= DSQRT((RNG XBXX2)+(RNG YBXX%2))
RNG B2Y= DSQART((RNG ZBX%2)+(RNG YBXX2))

COMPUTE CORRECT LOS ANGLES

EP = DATAN2 (- RNG ZB,RNG BXY)
EY = DATANZ2 (RNG YB,RNG XB)

SEEK EP = - GMB THT + EP
SEEK EY = - GMB PSI + EY

DLOSQ = (20.) % SEEK EP
DLOSR = (208.) ¥ SEEK EY

GMB WY = SEEK 21%PM + SEEK 22XGM + SEEK 23%RM
GMB WZ = SEEK 31%PM + SEEK 32%GM + SEEK 33%XRM

EXEEEKLEXKLELLEXEEXEXXKXRE XXX XX EXEEL XXX XXX XX XXX X

XX %% %X % %
%% % % Time to Go XXX
XX X% XX X%

HEXXEXEH KL LELELLXL LXK XXX XXX KX EEHEXEKKEXX XXX XXX
CONT INUE

IF(TGO HT.EQ.8.)HIT=.TRUE.

IF(TGO HT.EQ.@.)WRITE(1,1030) TIME, TGO HT

IF(TGO HT.EQ.0.)RETURN

IFCJTIME.EQ.2) BGOTO S1ie0

RIGG’S TGO

e greeew

DA "B S ¥

ren

D dYad
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AHAT = (AMAX X (DURAT-TIME) +

1 AMINX (TGO HT +TIME-DURAT))/TGO HT
IF(TIME.GT.DURAT) AHAT = AMIN

A INC = (UCX%X2) + 4.8X%AHATXRNG I

IF(A INC.LT.8.) A INC = VUC %% 2

TGO HT = 2. ¥ RNG I/(DABS(VC) + DSQRT(A INCY)

GOTO see
518 CONTINUE
MODIFIED RIGG’S TGO

o000 0O 0

AHAT = (AMAX X(DURAT-TIME) +

1 AMINX (TGO HT +TIME-DURAT))/TGO HT

IF(TGO HT.LT.DURAT) AHAT = (AMAX X(DURAT-TIME))/TGO HT
IF(TIME.GT.DURAT) AHAT = aMIN

AOFF = DATAN2(RNG BZY,RNG XB)

AHAT = AHAT % DCOS(AOFF)

A INC = (UCX%X2) + 4.8%¥AHATXRNG 1

IF(A INC.LT.9.) A INC = YC %x 2

TGO HT = 2, %¥ RNG 1/(DABS(VC) + DSGRT(A INC))

36 36 36 36 3 6 36 3 36 3 36 3 3 3 36 36 36 2 3 3 3 3 3¢ 3 36 3 X 3 3 3 3 3 3 3 X 3 I 3 I 3 3 2 X X X% X% X
% 3% % % %% % %
%% % Missile Control Law XXX %
%% %% % % % %
3 36 26 36 36 36 2 X 36 36 36 36 X 3 3 3 36 3 X 3 X 3 2 I 3 3 X 3 3 I I 36 3¢ 36 2 X 3 I %K X XXX

408 CONTINUE

0O O0000000

OLDU3 = U(D)
INT THT = 8.0
INT PSI = 9.0

U1 = AaMAX

IFC(TIME.GT.DURAT) U(1) = AMIN
U2 = @.

Ua) = @.

Udq) = @,

IFCTIME.LT.DLAY SW) GOTO 7ee
IF(JCNTRL.EQ.2) GOTO &1

Gl

o000 o o0

TGO HT3 = TGO HT X TGO HT X TGO HWT
CCi1l = 3.%XTGO HT/(3.X%XGaMMA + TGO HTI)
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CC12 = CC11 X TGO HT
ACCEL COMMAND IN FT/SECxx%2
MSL AXI = (CC11%X1 HT

MSL AYI] (CC11X%XY] HT
MSL AZI = (CC11%ZI HT

+

CC12%XVX1 HT
CC12XVY1l HT
CC12xV21 HT

"
+

+

X COMND = D11xXMSL AX] + DI2X¥MSL AYI + Di13x%MSL AZl
ucad = D21XMSL AXI + D22XMSL AYI + D23%XMSL All
1] gc)) = D31%XMSL AX] + D32%XMSL AYl + D33%MSL AZl

IF(JCNTRL.EQ.3) GOTO 428

GOTO &40

CONT INUE

TP3 = ,05%XTGO HTXDCOS(GMB PSI)

IF(TP3.LT..083) TP3 = .05

11 gc)) = (PMXDSINC(GMB PSI) - DLOSQ + GMB WY)> X%
(CEXXC(TP3) + EXX(-TP3))/(EXX(TP3) - EXX(-TP3)))
(1] @c)) = U¢3) ¥ MSL UXB / DCOS(GMB PSI)

w(a = OLDU3 + U(D %.05

GOTO 430

CONT INUE

XY CMND = DSQRT((X COMNDXX%2) + (U(2)%%X2))

INT THT = DATAN2(-U(3) ,XY CMND)

INT THT = GMB THT + (DLOSG/28.) - INT THT

INT PSI = DATAN2(U(2) ,DABS(X COMND))

INT PS1 = GMB PS! + (DLOSR/28.> - INT PSI

TP3 = ,03%XTGO HT

IF(TP3.LT..1) TP3 = .1

U = -GMB THTX

1 (CEXXCTP3) ¢+ EXX(-TP3))/(EXX(TP3) - EXX(-TP3)))
U = U(3) + 2.XINT THT/(EXX(TPJ) -~ EXX(-TP3))
U = U(3> ¥ MSL UXB / DCOS(GMB PSI)

U MAX = U(3) %X (NY MAX / U(2))

IFC(DABS(U(I)) .GT.U MAX) U(3) = DSIGN(U MAX,U()
TP2 = TP3

w2 = +GMB PSI X((EXX(TP2) + EXX(-TP2))

1 ZCEXX(TP2) - EXX(-TP2)))

U2 = U(2) - 2.XINT PSI/(EXX(TP3) - EXX(-TP3))
wWa = UC2) % MSL UXB / DCOS(GMB THT

DA A

. s - -
P
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! C
TP4 = ,2%XTGO HT
IF(TP4.LT..2) TP4 = .2
i ) c
. ucq) = + GMB PS] X((EXX(TP4) + EXX(-TP4))
~ 1 /7CEXX(TP4) - EX%X(-TP4)))
' ucq) = UY(q) - 2.XINT PSI/(EXX%X(TP4) - EX%X<(-TP4))
. c
. GOTO 436
C

638 CONTINUE
. [
F TP2 = TGO HT
- IFCTP2.LT..2 TP2 = ,2
f uc2) = +GMB PSI X((EXX(TP2) + EXX(-TP2)>
Ay 1 ZCEXX(TP2) - EX¥C(-TP2)))
. U2 = UC2) ¥ MSL UXB / DCOS(GMB THT)
X C

440 CONTINUE
o Cc
~ C ACCEL COMMAND IN DEG/SEC ¢ P MAX
> c

X _ TP4 = ,4%TGO HT
X IF(TP4.LT..2) TP4 = .2

SN THT = DSIN (GMB THT)

CN THT = DCOS (GMB THT)

SN PSI = DSIN (GMB PSI)

CN PSI = DCOS (GMB PSI)

. K= = (CN THT % SN PSI)X%%2 - (SN THTX%2)

SCALE = CN PSI % DSGRT(((SN PSIX%X2) + K)/((SN PSI¥%2) -1.))
> UMAX = P MAX %X SCALE

: uca = + GMB PSI X((EXX(TP4) + EXX(-TP4))

-~ 1 ZCEXX(TP4) - EXX(-TP4A))) .
uc® = UC4) - 2.XINT PSI/(EXX(TP4) - EXX(-TP4)) '
Uc4) = UC4) / SCALE

438 IF(JLIMIT.EQ.8) GOTO 708

IF(DABS(U(2)) .GT.NY MAX) U(2) = DSIGNCNY MAX,U(2))

IF(DABS(UC()) .GT.NZ MAX) U(3) = DSIGN(NZ MAX,U(3)) :
. IFC(JONTRL.EQ.3) U(4) = U4 - U X :
- 1DSIN(GMB PSI)/(MSL UXBXDCOS(GMB PSI))

4 B IFCDABS(UC4)) .GT.P MAX) UC4) = DSIGNC(P MAX,U(4))

PR
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5 788 CONTINUE
¥ c

5 oT THETA
PSI X%

PHI X%

c
c
c
c
) YPRIMEC(1) =
& YPRIME(2) =
- YPRIME(3) =
9 YPRIME(4) =
: YPRIME(S) =
YPRIME(S) =
YPRIME(?) =
YPRIME(S) =
" YPRIME(S) =
: YPRIMEC10)=
c
YPRIME( 14) =
YPRIME( 1%)=
* c
'«
.
N c
: YPRIMEC i) =
. YPRIMEC{2)=
g YPRIMEC 13)=
g c- YPRIMEC11)=
c- YPRIME(12)=
c- YPRIMEC( 13 =
’ RETURN
. c
[ 4
Ut b e .

.....

GMB THT % RD TO DG
: DGP = GMB PSI X RD TO DG
DGIP= INT PSI X RD TO DG
DGIT= INT THT X RD TO DG
§ DGIA= INT ASP X RD TO DG
, U2 = U(2) / GRAV
. U3 = - UC3) / GRAV
. U4 = UC4) % RD TO DG
: WRITEC1,1038) TIME, TGO HT
: WRITEC1,1048)RNG I,DGIA
- WRITE( 1, 1858) DGT ,DGP
WRITEC1,1048)DGIT,DGIP
WRITEC1,1065) U3,U2,Ud
WRITEC1,1078) DPH,DT,DP
WRITEC1,1080)MSL XI,MSL YI,MSL ZI

LINEAR INPUT SIGNS ON (4,5,4) OPPOSITE TO THE
BANK TO TURN CONTROL LAW FORMULATION

IF(DABS(THETA-(P1/2)) .LE.DG TO RD> GOTO 710

..........................................................
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SR tLC LAl Al

¥ RD TO DG
RD TO DG
RD TO DG

J
E|
;
d
'i
;
:

YONE(4)

YONE(3)

YONE( &)

+ DIIXUCL) + D21%UC2) + D31XUCD)
+ DI2XUC1) + D22%U(2) + D3I2%XU(D
+ DI3XUCL) + D23%UC2) + D3I3XU(ID)
8.

YONEC(11)

YONE(12)

YONE( 13

(DLOSQ - GMB WY)
(DLOSR - GMB W2)

= W PHI %X (YONEC(11)-A12XUC2) +A11XUC(3) -U(D))
- W THETA %X (YONE(12) + A22%U(2) + A21%XU(3))
- W PSI X (YONE(13) - A32XUC2) + AZIXU(I))
0.0
0.0
0.0
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718 CONTINUE

c
YPRIMEC(11)= - W PHI ¥ (YONEC11) - U(2>/MSL VXB)
YPRIME(12)= - W THETA ¥ (YONE(12) + (U(3)/MSL VXB))
YPRIME(13>= - W PSI ¥ (YONE(13) + U(4))

c- YPRIME(11)= - W PHI ¥ ( - U(2)/MSL VXB)

c- YPRIME(12)= - W THETA X ( + (U(3)/MSL UXB))

c- YPRIME(13)= - W PSI ¥ ( + Uwan

c
RETURN

c

1606 FORMAT(1H2,°VC = B8/)
1010 FORMAT(1H2,’RNG I = @)

16380 FORMAT(1H2,’TIME = “ ,E12.4,5X,’TGO HT = ‘,E12.4)
1040 FORMAT( {H2,’Range= ‘,E12.4,5X,’Aspect Angle= ‘ ,E12.4)
185@ FORMAT(1H2,’Gimbal Theta = /,E12.4,

12X,’Gimbal Psi = /. E12.9

1068 FORMAT(1H2,’Intercept Theta = ’,E12.4,
12X,’Intercept Psi = /. E12.9
10465 FORMAT(1H2, ‘Nz = /,E12.4,
14X,’Ny = ‘,E12.4,
24X,’P = /,E12.4)
1070 FORMAT(1H2,’Phi = ‘,E12.4,
12¢,’Theta = / ,E12.4,
22%X,’Psi = /,E12.4
1680 FORMAT(1H2,’Xm = ‘,E12.4,
12X,’Ym = /,E12.4,
22X,’Zm = ‘,E12.4,/)
END
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SUBROUTINE INIT(JOB,HIT)
IMPLICIT REALXS (A-I,K-2)

LOGICAL HIT

REAL PLOTX1,PLOTX2,PLOTY1,PLOTY2,PLOTZ1,PLOTZ2

REAL MINX,MINY ,MAXX ,MAXY

INTEGER I ,N,JSTATE,JINPUT,JCNTRL,JTIME,JLIMIT,JROLL,JOB
INTEGER INCHX, INCHY ,NPLOT ,NPTS

COMMON /PLOT/PLOTX1(2%) ,PLOTX2¢(2%) ,PLOTY1(2%) ,PLOTY2(2%) ,
1PLOTZ 1¢2%) ,PLOTZ2¢(2%) ,NPLOT ,NPTS

COMMON /TRGT/TRG XI,TRG YI,TRG 21,

1ITRG UXI,TRG VYI,TRG V2I,
2TRG AXI,TRG AYI,TRG AZ!l

COMMON /SET/ALTID®,GMB THe ,GMB PS8 ,RNG®,TRG V8,

1ASP TH@ ,ASP PS®,MSL V@,THET®,PHI®,PS18,TH8,CSPS18,SNPSIa,
2SNTHe ,MISS DS,STEP,DLAY SW,TRG XI9,TRG YI8,TRG 218,
3TX0,TY0,T20,0LD T,TRG PS0,TRG THO,TRG PHI ,JMAN

COMMON /MSL/Y( 1%) ,U(4) ,TGO HT,RNG I,UC

COMMON /OUT/W1(25,2%)

COMMON /SEEK/ SEEK 11,SEEK 12,SEEK 13,SEEK 21,

ISEEK 22,SEEK 23,SEEK 31,SEEK 32,SEEK 33,DLOSQ,DLOSR
COMMON /OPTION/ JCNTRL,JTIME,JLIMIT,JROLL

TRIG FUNCTIONS FOR DEGREES

SIN DG(XO = DSINCDG TO RD % X)
cas DG(XO = DCOS(DG TO RD % XO

IF(JOB.EQ.1) GOTO 1
VSOUND AT 10,000
USOUND = 437.43
K TO FT = 1.48894

0DG TO RD .9174332923
RD TO DG = 57.29377931

Initial Conditions

ALTIDO = 10000.90
GMB THO = ,107
GMB PS@ = + 40.0
RNGO = 3500.0
TRG Ve = 0.9

ASP THe = 0.0

ASP PSe = 180.0
MISS DS = 20.

HIT = ,FALSE.

Target Manuever
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TRG PHI = -%@,

JMAN = @
c
. c MISSILE
: c
MSL Ve = 8.9
‘e THET® = 8.0
PHI® = 0.9
PSle@ = 0.0

c
c INERTIAL TO BODY DIRECTION COSINES
c
D11 = DCOS(THET®) XDCOS(PSI®)
G D12 = DCOS(THET®) XDSINC(PSI®)
o D13 = - DSINCTHET®)
.._.: C
2; D21 = DSINC(PHI®) XDSINC(THET®) XDCOS(PSI@) -
™™ | DCOSC(PHI®) XDSINCPS10)
D22 = DSINCPHIO®) XDSINC(THET®) XDSINC(PSI@) +
x 1 DCOS(PHI®) XDCOS(PS1®)
= D23 = DSINC(PHI®) XDCOS(THET®)
o c
N D31 = DCOS(PHI®) XDSINCTHET®) XDCOS(PSI@) +
- 1 DSINCPHI®) XDSINCPSI@)
D32 = DCOS(PHI®) XDSINC(THET®) XDSINC(PSIQ) -
- 1 DSINCPHI@) XDCOSC(PS18)
> D33 = DCOS(PHI0) XDCOSC(THET®)
i C.
YC1) =@,
YC2) = 0.
Y¢I) = -ALTID®
Y(4) = MSL V@ ¥ USOUND ¥ K TO FT
Y¢S = Q.
Y(&) = Q.
Y¢?) = 0.
Y8 = PHIO
Y(9) = THET®@
Y¢10) = PSI0@
: Y1) =0,
: Y<12) =9,
; YC13) =0,
Y(14) = GMB THeXDG TO RD
.. Y1) = GMB PS@xXDG TO RD
5 c
: c SEEKER ANGLES (BODY TO SEEKER)
c

SEEK 11 = COS DG(GMB THe)> % COS DG(GMB PS@)
SEEK 12 = COS DG(GMB TH@> % SIN DG(GMB PS@)
SEEK 13 =- SIN DG(GMB TH®)
SEEK 21 =~ SIN DG(GMB PS@)

.............
..........

.......................




o060 000

o000

o000

SEEK
SEEK
SEEK
SEEK
SEEK

DLOS
DLOS

TIME

TGO

22
23
31
32
33

Q =
R =

TO
HT

Q.
GO
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C0S DG(GMB PS®)

8.

SIN DG(GMB TH@> X% COS DG(GMB PS@)
SIN DG(GMB TH@> % SIN DG(GMB PS@)
COS DG(GMB TH®)

2.520

MISSILE CONTROL INPUTS

Ui
U2
U3
uda)

TARGET (BODY TO INERTIAL)

TRG
TRG
TRG

TRG
TRG
TRG

TRG
TRG
TRG

TRG
TRG
TRG

TRG
TRG
TRG

TRG
TRG
TRG

X1
Y1
21

Xle
Yle
210

AXI
AY1
Azl

VXS
vYsS
vzs

vxB
vYB
vZe

VX1
VYl
V21

CONVERT

TRG

VX1

RNGOX(D11%XSEEK11 + D21XSEEK12 + D31XSEEK13)

RNGBX(D12%SEEK11 + D22%XSEEK12 + D32XSEEK13)

RNGOX(D13%XSEEK11 + D23%SEEK12 + D33XSEEK13d)
- ALTIDGe

TRG XI
TRG YI
TRG 21

TRG VexCO0S DG(ASP THB)Y X COS DG(ASP PS@)
TRG VOXCOS DG(ASP TH@) % SIN DG(ASP PS®)
TRG VOXSIN DGC(ASP TH@)

TRG UXSXSEEK!1+TRG VYSXSEEK21+TRG VZ2SXSEEK31
TRG UXSXSEEK12+TRG VYSXSEEK22
TRG UXSXSEEK13+TRG VYSXSEEK23+TRG V2SXSEEK33

D11XTRG UXB+D21%XTRG VYB+D31XTRG VZB
D12%XTRG VUXB+D22XTRG VYB+D32%XTRG VZB
D13%XTRG VXB+D23%XTRG VYB+D33%TRG V2B

TO FT/SEC

TRG UX! % USOUND %X K TO FT

-l
K
|
S

R

)

4 "R

A l. l' ‘_l_-‘ - l.:l ") .J“‘ )

A s Y




TRG UYl = TRG VYI % VSOUND % K TO FT

) e

{ TRG V21 = TRG VZ2I ¥ VUSOUND X K TO FT

X c

' TRG V8 = TRG V@ ¥ VUSOUND ¥ K TO FT &
c g

- c INITIALIZE RANGE AND VC ’
c

. RNG I = RNG8

. vc = (TRG UX] - Y(4)) ¥ DABS(TRG XI)

. 1 +TRG VY1 % DABS(TRG YD)

2 2 +TRG V21 ¥ DABS(TRG 21D

: vC = UC/RNG I

. C

T c INITIALIZ2E TARGET MOTION

: c

IFCTRG VYI.EQ.8) TRG PS® = 10%%3 -
IFCTRG UYI.NE.®) TRG PS@ = TRG UXI/TRG VYI %
TRG PS8 = DATAN(TRG PS@)%RD TO DG 1
IF(TRG UX1.GE.8.AND.TRG VY1.GE.9.)

1 TRG PS8 = TRG PS®

IF(TRG UXI.GE.9.AND.TRG VYI.LE.0.) ]
1 TRG PS8 = - TRG PSe@ g
IF(TRG VUXI.LE.8.AND.TRG VYI.GE.08.) X
1 TRG PS@ = + TRG PS8 + 90. b
IFCTRG UXI.LE.®@.AND.TRG VYI.LE.8.) i
1 TRG PS@ = - TRG PS8 - 90, q
THe = DSQRT((TRG UXIX%2) +(TRG VYI%%2)) 4
IF(THe .EQ.8) TRG THe = 18%%3
IF(THB.NE.®) TRG TH@ = TRG VZ1/THe

-~ p
’ TRG THO = DATANC(TRG TH@)XRD TO DG g
. IF(TRG V21.GE.9.) TRG THO = - TRG THe ]
CSPS10 = COS DG(TRG PS® n

R SNPS10 = SIN DG(TRG PS@®
; SNTH8 = SIN DG(TH®) .
. TXO = TRG XI X
TYO = TRG YI -

T20 = TRG 2I A
OLD T = 9.0 )

X Cc -
X RETURN B
- c -
c OUTPUT

C "1

: 1 CONTINUE R

c t\1

TRG ALT = -TRG 21 R

TRG PH = 0. o

c "

-,

1 T

. PHIm = Y(8)%RD TO .DG
THETAm = Y(?)X%RD TO DG

.............
..................................
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PSIln = Y(10)XRD TO DG
WRITE(NPLOT, 160

1086 FORMAT(IH1,////1X,13(’%’) ,* BanKk-to-Turn Missile “,
1°’Simulation 7,12¢’%") ,//
WRITE(NPLOT ,2080) ALTIDO,MSL V8 ,THETAmM,PHIm,
iGMB THe ,GMB PS8 ,ASP THe ,ASP PS8,TRG ALT,TRG V@,
2TRG THB,TRG PHO ,RNGO

) 200 FORMAT(1X,’Inital Set Up’,///,

15X,’Missile :“//,15x,’Al titude = ’,G612.2,
23X,’Velocity = /,612.2,/,13X,’Pi tch =’ ,G12.2,
36X, ’Rol 1 = /,612.2,/,15%x,’Gym Theta= ’,612.2,
435X,’Gym Psi =‘,612.2,//,5X,’Target :’//,
S15x,’Asp Theta=’ ,G612.2,6X,’Asp Psi = ’,612.2,/,
613x,’Al ti tude = ‘ ,G612.2,5X,’Velocity = ,612.2,/,
713X, ’Pitch = /,612,.2,3X,’Rol1 =’ .612.2,//,
813X, ‘Range = /,612.2,/,
WRITE(NPLOT,308) Y(4) ,Y(® ,Y(& ,TRG XI,TRG YI,TRG 21,
1TRG VXI,TRG VY1 ,TRG V21

380 FORMAT(1H®,’Inital Position/Velocity’,//,

15X,’Missile :’//,15x,’X Velocity = ’,612.2,/,
215X,’Y Velocity =/ .812.2,/,15%,’2 Velocity =
3G12.2,//7,

43X ,’Target :’//,19x,’X = /,612.2,/,

SI1SX,’Y =/ .612.2,/,15%,’2 = /,612.2,//,
815x,’X Velocity = ’,.612.2,/,

715X,’Y Velocity =/ .6G12.2,/,185X,’2 Velocity =/,
8G612.2)

WRITE(NPLOT,488) MISS DS, TGO HT,TRG PHI
488 FORMAT( 1HO,’Parameters ‘,//,
15X, ‘’Miss Distance = “,612.2,
23%,’TGO HT = ’/,612.2,/,
35X, ‘Target Rol} = ’,612.2)
IF(JCNTRL.EQ.1) WRITE(NPLOT,S00)
500 FORMAT(1H@®,’G1 Guidance’)
IFCJONTRL.EQ.2) WRITE(NPLOT,S18
3518 FORMAT( 1HO,’Pro-Nav Buidance’)
IF(JCNTRL.EQ.3) WRITE(NPLOT,S20)
526 FORMAT(1HO,’Bank-to-Turn Guidance’)
IF(JLIMIT.EQ.@) WRITE(NPLOT,S3®)
S38 FORMAT(1HO,’Unconstrained’)
IFCJLIMIT.EQ. 1) WRITE(NPLOT,S49)
S48 FORMAT(1HO@,’Constrained’)
. IFCJTIME.EQ. 1) WRITE(NPLOT,SS®)
356 FORMAT(1HO,’Riggs Tgo’)
IFCJTIME.EQ.2) WRITE(NPLOT,Sé8)
366 FORMAT( 1HO ,’New Tgo’)

RETURN
END
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APPENDIX D
GENERIC MISSILE CHARACTERISTICS

The generic bank-to-turn missile (Figure D.1) is a short range
missile that can produce more than 100 g of normal acceleration and
approximately 5 g of lateral acceleration. ROLL rates of up to 500
degrees per second are attainable. Launch weight is 165 pounds with 50
pounds of propellant that produces 4712 pounds of thrust for 2.6
seconds. The shape is 2:1 elliptical cross section with a blunt base
and parabolic forebody. The wings are planar with a clipped doudble
delta platform. The tails are all movable crusiform also with a clipped

double delta. Additional information is available in [30,31].
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